Real quadratic fields with large class number

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Real Quadratic Orders with Large Class Number

Acknowledgements I am undoubtedly indebted to my two supervisors, Alf van der Poorten and Hugh Williams. Most students would feel lucky to have one good supervisor whereas I had the privilege of having two excellent mathematicians to guide me. Their help, wisdom and infinite patience has been invaluable, and I am very grateful for it. The Mathematics Department at Macquarie University has provi...

متن کامل

Computation of Real Quadratic Fields with Class Number One

A rapid method for determining whether the real quadratic field Sí = S(\/D) has class number one is described. The method makes use of the infrastructure idea of Shanks to determine the regulator of .W and then uses the Generalized Riemann Hypothesis to rapidly estimate L(l, x) to the accuracy needed for determining whether or not the class number of 3£ is one. The results of running this algor...

متن کامل

On a Class Number Formula for Real Quadratic Number Fields

For an even Dirichlet character , we obtain a formula for L(1;) in terms of a sum of Dirichlet L-series evaluated at s = 2 and s = 3 and a rapidly convergent numerical series involving the central binomial coeecients. We then derive a class number formula for real quadratic number elds by taking L(s;) to be the quadratic L-series associated with these elds.

متن کامل

Real Quadratic Number Fields

a4 + 1 a5 + .. . will see that a less wasteful notation, say [ a0 , a1 , a2 , . . . ] , is needed to represent it. Anyone attempting to compute the truncations [ a0 , a1 , . . . , ah ] = ph/qh will be delighted to notice that the definition [ a0 , a1 , . . . , ah ] = a0 + 1/[ a1 , . . . , ah ] immediately implies by induction on h that there is a correspondence ( a0 1 1 0 ) ( a1 1 1 0 ) · · · (...

متن کامل

The 4-class Group of Real Quadratic Number Fields

In this paper we give an elementary proof of results on the structure of 4-class groups of real quadratic number fields originally due to A. Scholz. In a second (and independent) section we strengthen C. Maire’s result that the 2-class field tower of a real quadratic number field is infinite if its ideal class group has 4-rank ≥ 4, using a technique due to F. Hajir.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Annalen

سال: 1977

ISSN: 0025-5831,1432-1807

DOI: 10.1007/bf01351721